## Yamaha DX7 to Yamaha SY77 Conversion Guide

Copyright © 2022, Derek Cook, www.xfactory-librarians.co.uk


## Summary

This document describes how to convert Yamaha DX7 and DX7II Voices and DX7II Performances to the Yamaha SY77/TG77/SY99 series of synthesizers.

The guide is useful for people either wishing to manually convert Voices or to write programming utilities to do so. For example, my sy.factory librarian has this capability.

## Contents

Introduction ..... 2
References ..... 2
SY77 Voice Common Parameters mapped from the DX7/DX7II .....  3
SY77 Normal Voice Element Data Mapped from the DX7/DX7II ..... 5
SY77 AFM Element Common Parameters mapped from the DX7/DX7II ..... 7
SY77 AFM Element Operator Parameters mapped from the DX7/DX7II ..... 9
DX7II Performance Parameters Mapped to the SY77 ..... 12
DX7 Voice Parameters not Mapped to SY77. ..... 13
DX7II Voice Parameters not Mapped to SY77 ..... 14
DX7II Operator Parameters not Mapped into SY77 ..... 14
DX7II Performance Parameters not Mapped into SY77 ..... 15
DX7 to SY77 Algorithm Mapping - Algorithm Selection ..... 16
DX7 to SY77 Algorithm Mapping - Operator Remapping and Values ..... 33
DX7 to SY77 Algorithm Mapping - Operator Settings for the Different Algorithms ..... 34
DX7 to SY Level Scaling ..... 89
DX7 to SY Scaling Constants ..... 91
DX7 to SY Lookup Tables ..... 92
Annex A - SY77 FM Implementation Description ..... 95

Introduction

This document describes how to convert Yamaha DX7 and DX7II Voices and DX7II Performances to the Yamaha SY77/TG77/SY99 series of synthesizers. Where I refer to either SY77 or SY I of course mean SY77, TG77 or SY99.

The guide is useful for people either wishing to manually convert Voices or to write programming utilities to do so. For example, my sy.factory librarian has this capability.

The contents of this document are the results of my own investigations into the differences between the DX and SY series. My work may or may not be $100 \%$ correct, and I also guess there are different approaches as well to the conversion that may yield similar or better results. Feel free to offer improvement suggestions via the support page on my website listed above.

Like any conversion where the Voice Architectures are different, perfect conversion results cannot be guaranteed.

While the SY77 is very obviously based on the DX7 6 Operator implementation, it is quite different in a number of areas, the key ones being:

- There are 45 algorithms on the SY77, and a mapping between DX7 and SY77 algorithms has to be made. This is more complicated than it sounds, as instead of setting a single algorithm value (like on the DX7) there are parameters in the operators that need to be carefully setup that define how they work within the algorithm as the SY77 has a more complex FM implementation (e.g., multiple and programmable feedback paths).
- If you are doing a manual conversion then the SY will set a lot of this up for you when selecting the correct algorithm, however a program utility needs to set up a lot of parameters (including "internal parameters" not referenced in the SY MIDI implementation.
- When selecting a suitable SY77 algorithm, the mapping of operators between the DX7 algorithm is not always a 1 to 1 relationship. For example, DX7 algorithm 7 maps to SY77 algorithm 32, and operator 6 maps to operator 5 , operator 5 to operator 4 , operator 5 to operator 6 , with the remaining operators mapping 1 to 1 .
- A lot of parameters have either a more limited or greater range on the SY77, so DX7 values need to be scaled to match the SY77 range.
- The envelopes on the SY77 have more segments.
- The big difference between the DX7 and SY77 is operator level scaling. On the DX7 you program a single breakpoint (key value) and then a depth and curve type (exponential or linear) either side of the breakpoint. On the SY77 you have four breakpoints and a level for each one. So, this is where the biggest difference in sound occurs as the scaling can only be approximated. This may result in voices being brighter or duller in tone (for scaling on a modulating operator) or volume (for scaling on a carrier operator) than the source DX7 Voice.


## References

- DX7 Owner's Manual
- DX7II Owner's Manual
- SY Programming by Herbert Janssen


## SY77 Voice Common Parameters mapped from the DX7/DX7II

## DX7 and DX7II common voice parameters that need mapping to an SY Voice

Note 1: Some DX7 Parameters are global "function parameters" and not included in the Voices themselves, and thus unavailable.
Note 2: DX7/DX7II parameter names are from the DX7II manual; the DX7 manual does not provide shortform names.

| SY77 |  | DX7 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Name | Parameter | Name | Notes |  |
| ELMODE | Element Mode | $\begin{aligned} & \text { DX7: --------- } \\ & \text { DX7II: PMOD } \\ & \text { DX7II: PLMD } \end{aligned}$ | DX7: ---------- <br> DX7II: Voice Mode <br> DX7II: Performance Mode | Needs to be set according to the following <br> 1 AFM Poly for DX7 voices or DX7II single performance (using only Voice A) <br> 2 AFM Poly for a DX7II dual/split performance (using both Voice A and Voice B) <br> 1 AFM Mono if PMOD bit 0 is set for DX7II Voices or single performance <br> The DX7 Poly/Mono mode is a Function Parameter, not stored in a Voice <br> The DX7II Unison mode is not supported on the SY77 <br> The DX7II can also mix and match different modes, but an SY77 cannot. |  |
| VNAME0 | Voice Name Character 0 | VNAM1 | Voice Name Character 1 | Or truncated Performance name for DX7II Performances |  |
| to |  |  |  |  |  |
| VNAME9 | Voice Name Character 9 | VNAM10 | Voice Name Character 10 |  |  |
| WPBR | Wheel Pitch Bend Range | DX7II: PBR |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Function parameter in DX7. Leave at SY77 default Direct mapping from PBR |
| ATPBR | After Touch Pitch Bend Range |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |
| PMASN | Pitch Modulation Device Assign |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| PMRNG | Pitch Modulation Range |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| AMASN | Amplitude Modulation Device Assign |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default <br> Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| AMRNG | Amplitude Modulation Range |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default <br> Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| FMASN | Filter Modulation Device Assign |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |
| FMRNG | Filter Modulation Range |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |
| PNLASN | Pan Modulation Device Assign |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| PNLRNG | Pan Modulation Range |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| COASN | Filter Cutoff Bias Device Assign |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |


| SY77 |  | DX7 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CORNG | Filter Cutoff Bias Range |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |
| PNBASN | Pan Bias Device Assign |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| PNBRNG | Pan Bias Range |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| EGBASN | EG Bias Device Assign |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| EGBRNG | EG Bias Range |  |  | $\begin{aligned} & \hline \text { DX7: } \\ & \text { DX7II } \end{aligned}$ | Leave at SY77 default Consider preference selection for DX7II MW, FC1, BC, AT, FC2, MC |
| VVLASN | Voice Volume Device Assign |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |
| VVLLML | Volume Limit Low |  |  | $\begin{aligned} & \text { DX7: } \\ & \text { DX7II: } \end{aligned}$ | Leave at SY77 default Leave at SY77 default |
| MCTUN | Microtuning Table Select | МСТВ <br> MCKY | Microtuning Table Select Microtuning Key | DX7: <br> DX7II Voice: <br> Set to 2 (normal tuning, 0-1 = user microtunings, $2+=$ preset mictotunings) <br> DX7II Performance <br> There are 11 preset microtunings in the DX7II. These correspond with Microtunings 1 to 55 in the SY77. The Combination of MCTB and MCKY will need to be used to select the appropriate SY77 microtuning. |  |
| RNDP | Random Pitch Fluctuation | RNDP | Random Pitch Fluctuation | DX7: <br> Set to 0 . <br> DX7II <br> Only if DX7II ACED data is available, otherwise defaults to 0 |  |
| PORM | Portamento Mode | PORM | Portamento Mode | DX7II Only; function parameter on DX7. <br> Need to check bits in PORM and see what they do. <br> Set to 1 for DX7 Voices |  |
| POS | Portamento Time | POS | Portamento Time | DX7II Only; function parameter on DX7. <br> Needs scaling from 0~99 to 0~127 <br> Set to 0 for DX7 Voices |  |
| VVOL | Voice Volume | TVLM | Total Volume | $\begin{aligned} & \text { DX7/[ } \\ & \text { DX7II } \end{aligned}$ | Voices set to 127 <br> ormance only set to TVLM |

## SY77 Normal Voice Element Data Mapped from the DX7/DX7II

DX7 and DX7II common voice parameters that need mapping to an SY Element within an SY voice. A DX7/DX7II Voice or a DX7II Performance can be mapped to an SY 1 AFM Poly Voice type which has a single AFM element.

A DX7II split or layered Performance requires an SY 2 AFM Poly Voice type, which has two AFM elements and the DX7II Performance Voice A is mapped into Element 1, and the DX7II Performance Voice B is mapped into Element 2.

For SYSEX Dumps that contain DX7II Performance and Voice data you need to decide if you are converting Voices, Performances or Voices and Performances. If DX7II performance data is detected, my sy.factory librarian creates two JNN files: One for the Voices and one for the Performances.

Note 1: DX7/DX7II parameter names are from the DX7II manual; the DX7 manual does not provide shortform names.

| SY77 |  | DX7/DX7II |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | Name | Parameter | Name | Notes |
| ELVL | Element Level | DX7 $\qquad$ DX7II: BLNC | DX7: $\qquad$ DX7II: BLNC | DX7: Set to 127 for DX7 Voices. <br> DX7II: For DX7 II Dual/Split Performances the BLNC parameter should be used to scale the relative volume of the two elements. <br> BLNC $=-50=$ only Element 1 should sound. <br> BLNC $=+50=$ only Element 2 should sound. |
| ELDT | Element Detune | DDTN | Dual Detune | DX7II Performance only. <br> Element $1=+$ DDTN. Element $2=-$ DDTN. <br> On the SY77 this is a four bit field, with the MSB being a sign bit, which is set for negative values. E.g. $\begin{aligned} & 0 \times 00=0 \\ & 0 \times 01=+1,0 \times 07=+7 \\ & 0 \times 09=-1,0 \times 0 f=-7 \end{aligned}$ |
| ELNS | Element Note Shift | DX7: TRNP DX7II: NSFTA DX7II: NSFTB | Transpose Note Shift A Note Shift B | DX7: Transpose is $+/-2$ octaves, so centre Range is $0 \times 18$. SY centre Range is $0 \times 40$, so add 0×28 to DX7 Value <br> DX7II: Add or subtract DX7II Performance Note shift from DX7 Voice Transpose. The combination of a DX7 TRNP and DX7II NSFT is up to four octaves. The SY77 note shift is greater than plus or minus five octaves. |
| ENLL | Element Note Limit Low | SPPT | Split Point | DX7II Performance only. <br> For DX7 Voice or DX7II Dual Performance, set to 0 <br> For DX7II Split Performance, Element 1 is set to 0 , Element 1 is set to SPPT+1 |
| ENLH | Element Note Limit High | SPPT | Split Point | DX7II Performance only. |

## Page 5

|  |  |  |  | For DX7 Voice or DX7II Dual Performance, set to 127 <br> For DX7II Split Performance, Element 1 is set to SPPT, Element 1 is set to 127 |
| :--- | :--- | :--- | :--- | :--- |
| EVLL | Element Velocity Limit Low | ----- | Default to 1 |  |

## Page 6

## SY77 AFM Element Common Parameters mapped from the DX7/DX7II

DX7 and DX7II common element parameters that need mapping to an SY Element within an SY voice. A DX7/DX7II Voice or a DX7II Performance can be mapped to an SY 1 AFM Poly Voice type which has a single AFM element.

A DX7II split or layered Performance requires an SY 2 AFM Poly Voice type, which has two AFM elements and the DX7II Performance Voice A is mapped into Element 1, and the DX7II Performance Voice B is mapped into Element 2.

For SYSEX Dumps that contain DX7II Performance and Voice data you need to decide if you are converting Voices, Performances or Voices and Performances. If DX7II performance data is detected, my sy.factory librarian creates two JNN files: One for the Voices and one for the Performances.

Note 1: DX7/DX7II parameter names are from the DX7II manual; the DX7 manual does not provide shortform names.

| SY77 |  | DX7 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | Name | Parameter | Name | Notes |
| ALGNUM | Algorithm Number | ALS | Algorithm Selector | Lookup table required to map from DX7 to SY7. See the algorithm mapping later in this document in Section DX7 to SY77 Algorithm Mapping - Algorithm Selection on Page 16. <br> The operators also need to be remapped to match the algorithm. See the translation table given in Section DX7 to SY77 Algorithm Mapping - Operator Remapping and Values on Page 33. <br> There may of course be other possibilities for operator reuse, but these are the ones I selected for sy.factory. |
| FPR1 | Pitch EG Key On Rate 1 | PR1 | Pitch EG Rate 1 | Needs scaling from 0 ~ 99 to 0 ~ 63 |
| FPR2 | Pitch EG Key On Rate 2 | PR2 | Pitch EG Rate 2 | Needs scaling from 0 ~ 99 to 0 $\mathbf{6 3}$ |
| FPR3 | Pitch EG Key On Rate 3 | PR3 | Pitch EG Rate 3 | Needs scaling from 0 099 to $0 \sim 63$ |
| FPRR1 | Pitch EG Key Off Release Rate 1 | PR4 | Pitch EG Rate 4 | Needs scaling from 0 ~ 99 to 0 ~ 63 |
| FPLO | Pitch EG Key On Level 0 | PL4 | Pitch EG Level 4 | Needs scaling from -50~+49 to -64~+63 Note that PL4 is used for both FPLO and FPRL1 |
| FPL1 | Pitch EG Key On Level 1 | PL1 | Pitch EG Level 1 | Needs scaling from $\mathbf{- 5 0} \sim+49$ to -64 ~ +63 |
| FPL2 | Pitch EG Key On Level 2 | PL2 | Pitch EG Level 2 | Needs scaling from $\mathbf{- 5 0 \sim + 4 9}$ to -64 ~ +63 |
| FPL3 | Pitch EG Key On Level 3 | PL3 | Pitch EG Level 3 | Needs scaling from $\mathbf{- 5 0 \sim + 4 9}$ to -64 ~ +63 |
| FPRL1 | Pitch EG Key Off Level 1 | PL4 | Pitch EG Level 4 | Needs scaling from -50 ~ +49 to -64 ~ +63 Note that PL4 is used for both FPLO and FPRL1 |
| FPEGR | Pitch EG Range | DX7II PBR |  | DX7: Set to 0 <br> DX7II: Direct 1 to 1 transfer |


| SY77 |  | DX7 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| FPRS | Pitch EG Rate Scaling | DX7II PGRS |  | DX7: Set to 0 <br> DX7II: Direct 1 to 1 transfer <br> Translate from $\mathbf{0 \sim 7}$ to -7~+7. <br> This is a direct one to one mapping, as on the SY99 this is a four bit field, with the MSB being a sign bit, which is set for negative values. E.g. $\begin{aligned} & 0 \times 00=0 \\ & 0 \times 01=+1,0 \times 07=+7 \\ & 0 \times 09=-1,0 \times 0 f=-7 \end{aligned}$ |
| FVPSW | Pitch EG Velocity Switch | DX7II VPSW |  | DX7: Set to 0 <br> DX7II: Direct 1 to 1 transfer |
| FLFSPD | LFO Speed | LFS | LFO Speed | Use scaling table |
| FLFDLY | LFO Delay | LFD | LFO Delay Time | Direct 1 to 1 transfer |
| FLFPMD | LFO Pitch Modulation Depth | LPMD | LFO Pitch Mod Depth | Translate from $0 \sim 99$ to $0 \sim 127$ - Simple scaling is fine |
| FLFAMD | LFO Amplitude Modulation Depth | LAMD | LFO Amplitude Mod Depth | Translate from $0 \sim 99$ to $0 \sim 127$ - Simple scaling is fine |
| FLFFMD | LFO Filter Modulation Depth | ---- | ---- | Set to 0x00 |
| FLPFWAV | LFO Wave | LFW | LFO Wave | Direct 1 to 1 transfer |
| FLINTP | LFO Initial Phase |  |  | Set to 0x00 |
| SLFWD | Sub LFO Wave | ---- | ---- | Set to 0 |
| SLFS | Sub LFO Speed | ---- | ---- | Set to 80 |
| SLFDM | Sub LFO Delay and Decay Mode | ---- | ---- | Set to 0 |
| SLFDT | Sub LFO Delay and Decay Time | ---- | ---- | Set to 0 |
| SLPMD | Sub LFO Pitch Modulation Depth | ---- | ---- | Set to 0 . |

Note: The DX7 FBL voice parameter is translated as an input level on the SY77 operator with the feedback path.

## Page 8

## SY77 AFM Element Operator Parameters mapped from the DX7/DX7II

## The DX7 operator parameters that need mapping to SY AFM operators.

Note: Depending on the algorithm mapping, there may not be a direct 1 to 1 mapping relationship between DX and SY operators. For example, DX7 algorithm 7 maps to SY77 algorithm 32, and operator 6 maps to operator 5 , operator 5 to operator 4, operator 5 to operator 6 , with the remaining operators mapping 1 to 1.

| SY77 |  | DX7 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | Name | Parameter | Name | Notes |
| R1 | EG Key On Rate 1 | R1 |  | DX7 R1, scaled by (99/63) or use a lookup table |
| R2 | EG Key On Rate 2 | R2 |  | DX7 R2, scaled by (99/63) or use a lookup table |
| R3 | EG Key On Rate 3 | R3 |  | DX7 R3, scaled by (99/63) or use a lookup table |
| R4 | EG Key On Rate 4 | ---- | ---- | DX7 R3, scaled by (99/63) or use a lookup table |
| RR1 | EG Key Off Rate 1 | R4 |  | DX7 R4, scaled by (99/63) or use a lookup table |
| RR2 | EG Key Off Rate 2 | ---- | ---- | DX7 R4, scaled by (99/63) or use a lookup table |
| L0 | EG Key On Level 0 | ---- | ---- | Set to 0 . |
| L1 | EG Key On Level 1 | L1 |  | DX7 L1, scaled by (99/63) or use a lookup table |
| L2 | EG Key On Level 2 | L2 |  | DX7 L2, scaled by (99/63) or use a lookup table |
| L3 | EG Key On Level 3 | L3 |  | DX7 L3, scaled by (99/63) or use a lookup table |
| L4 | EG Key On Level 4 | ---- | ---- | DX7 L3, scaled by (99/63) or use a lookup table Note: has no effect when R4/L4 is the same as R3/L3 |
| RL1 | EG Key Off Level 1 | ---- | ---- | DX7 L4, scaled by (99/63) or use a lookup table |
| RL2 | EG Key Off Level 2 | L4 |  | DX7 L4, scaled by (99/63) or use a lookup table Note: has no effect when R4/L4 is the same as R3/L3 |
| SLP | EG Sustain Loop Point | ---- | ---- | Set to 3 (Loop at L4) |
| DT | EG Key On Hold Time | ---- | ---- | Set to 63 (0 on SY77 display is $63-$ HT value) |
| RS | EG Rate Scaling | RS | Rate Scaling | Translate from $\mathbf{0}$ ~ 7 to -7 ~ + 7 . <br> This is a direct one to one mapping, as on the SY99 this is a four bit field, with the MSB being a sign bit, which is set for negative values. E.g. $\begin{aligned} & 0 \times 00=0 \\ & 0 \times 01=+1,0 \times 07=+7 \\ & 0 \times 09=-1,0 \times 0 f=-7 \end{aligned}$ |
| FAMS | Amplitude Modulation Sensitivity | AMS | Amplitude Modulation Sensitivity | DX7: AMS parameter in VCED. <br> Set to Round(DX AMS $\times(7 \div 3), 0)$, which gives: $0,2,5,7$ <br> DX7II : AMS parameter in ACED data. Direct mapping |

Page 9

| SY77 |  | DX7 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| VSON | Velocity Sensitivity | TS | Touch Sensitivity | Translate from $\mathbf{0 \sim 7}$ to -7~+7. <br> This is a direct one to one mapping, as on the SY99 this is a four bit field, with the MSB being a sign bit, which is set for negative values. E.g. $\begin{aligned} & 0 \times 00=0 \\ & 0 \times 01=+1,0 \times 07=+7 \\ & 0 \times 09=-1,0 \times 0 f=-7 \end{aligned}$ |
| ALGSRCO | Oscillator Input Source 0 | ---- | ---- | Set according to the algorithm and operator mappings using the values given in Section DX7 to SY77 Algorithm Mapping - Operator Settings for the Different Algorithms on Page 34. |
| ALGSRC1 | Oscillator Input Source 1 | ---- | ---- |  |
| ALGDST | Oscillator Output Destination | ---- | ---- |  |
| OACSRCO | Out Accumulator Input 0 Source | ---- | ---- |  |
| OACSRC1 | Out Accumulator Input 1 Source | ---- | ---- |  |
| SHIFTO | Oscillator Input 0 Shift Value | ---- | ---- |  |
| SHIFT1 | Oscillator Input 1 Shift Value | ---- | ---- |  |
| COR | Output Level Correction | ---- | ---- |  |
| PWAVE | Oscillator Waveform | ---- | ---- | Set to 0 (sinewave) |
| FMLPMS | Main LFO Pitch Modulation Sensitivity | LPMS | LFO Pitch Mod Sensitivity | This is a voice parameter applied to all operators in the DX7, so apply that DX7 voice parameter to all SY77 operators <br> Direct mapping between DX7 and SY77 |
| PES | Pitch EG Switch | VPSW |  | $\begin{aligned} & \text { DX7, set to } 1 \\ & \text { DX7II, set all SY77 values to value of VPSW } \end{aligned}$ |
| FPM | Frequency Mode | PM | Frequency Mode | This is a direct copy between DX7 and SY77. $0=$ Ratio, 1 = Fixed |
| KOE | Initial Phase Set Enable | OPI | Oscillator Phase Init | Direct mapping between DX7 and SY77 <br> Note, this is a voice parameter in the DX7, but can be independently set on each SY77 oscillator. Apply the DX7 setting to all operators |
| PHASE | Initial Phase of Oscillator | ----- | ----- | Set to 0 |
| FPD | Pitch Detune | PD | Detune | Translate from -7~7 to -15~+15 <br> Note, DX7 0 setting is $0 \times 07$. SY77 0 setting is $0 \times 00$, with $B 4$ being a sign bit. So will need to translate. Translation table may be easiest <br> Simple translation table is $[23,22,21,20,19,18,17,0,1,2,3,4,5,6,7]$ |
| TL | Total Level | TL | Total Level | Translate from 0 ~ 99 to 0 ~ 127 <br> DX7 TL $\times$ (127 $\div 99$ ), or use the table in Section 9.6 of the SY Programming Guide. They say that mapping is nonlinear and best provided by a lookup table. |

Page 10

| SY77 | DX7 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| BP1 | Output Scaling Break Point 1 | ---- | Note that BP1-4 and EGOS1-4 are the most difficult parameters to translate from <br> the DX to the SY as the output scaling approaches are totally different. This is the <br> best approximation I could come up with. |
| BP2 | Output Scaling Break Point 2 |  | 21 |

Page 11

## DX7II Performance Parameters Mapped to the SY77

If DX7II Performance data is detected in a SYSEX file then it can either be ignored or you use the data to create the SY Voice equivalent of a DX7II performance. DX7II Performances reference the DX7II Voices only by number, so multiple performances can reference the same Voice. However, this is not possible in the SY, so the best approach if Voice and Performance data is detected in a DX7II SYSEX file is to:

- Create an SY JNN file for the Voices
- Create an SY JNN file for the Performances (with the DX7II two Voices incorporated into the SY77 Voice as separate AFM elements)

| DX7II |  | SY77 |  |
| :---: | :---: | :---: | :---: |
| Parameter | Notes | Parameter | Notes |
| VNMA | A Channel Voice Number | ---- | Use to select the Voice for Element 1 conversion |
| VNMB | B Channel Voice Number | ---- | Use to select the Voice for Element 2 conversion |
| PNMD | Pan Mode | ---- | Create PAN Settings for each DX7II Performance <br> Use to select whether or not an element has its pan table set. Also <br> - Set the Pan Name to the Performance Name <br> - Set the PAN EG Loop Point to 3 |
| PANRNG | Pan Controller Range | PNSCDPT | Direct Mapping |
| PANASN | Pan Controller Assign | PNSCSEL | Map from DX7II LFO, Velocity Key <br> To SY77 Velocity, Key, LFO |
| PNEGR1 | Pan EG Rate 1 | PNR1 | Map from 0-99 to 0-63 |
| PNEGR2 | Pan EG Rate 2 | PNR2 | Map from 0-99 to 0-63 |
| PNEGR3 | Pan EG Rate 3 | PNR3 PNR4 | Map from 0-99 to 0-63 |
| PNEGR4 | Pan EG Rate 4 | PNRR1 PNRR2 | Map from 0-99 to 0-63 |
| PNEGL1 | Pan EG Level 1 | PNL1 |  |
| PNEGL2 | Pan EG Level 2 | PNL2 |  |
| PNEGL3 | Pan EG Level 3 | $\begin{aligned} & \hline \text { PNL3 } \\ & \text { PNL4 } \end{aligned}$ |  |
| PNEGL4 | Pan EG Level 4 | PNLO <br> PNRL1 <br> PNRL2 |  |

## DX7 Voice Parameters not Mapped to SY77

The following DX7 Voice parameters are ignored by sy.factory during conversion as I could not find equivalents in the SY, but I did write the converter a decade ago! If you know otherwise then please let me know.

| DX7 |  | SY77 |  |
| :--- | :--- | :--- | :--- |
| Parameter | Notes | Parameter | Notes |
| LFKS | LFO Key Sync | Idon't think that LFO Key Sync is supported on the SY77. It's <br> pretty unnatural anyway! |  |

## DX7II Voice Parameters not Mapped to SY77

The following DX7II Voice parameters are ignored by sy.factory during conversion as I could not find equivalents in the SY, but I did write the converter a decade ago! If you know otherwise then please let me know.

| DX7II |  |  | SY77 |
| :--- | :--- | :--- | :--- |
| Parameter | Notes | Parameter | Notes |
| LTRG | LFO Key Trigger Delay |  |  |
| PBS | Pitch Bend Step |  |  |
| PBM | Pitch Bend Mode |  |  |
| PONT | Portamento Step |  | Unused. I think this is used to create Glissandos on the DX7II |
| ---- | Reserved |  |  |
| UDTN | Unison Detune Depth |  | Unused, as the SY77 does not support unison mode? |
| FCCS1 | Use FC 1 as CS1 switch |  |  |

## DX7II Operator Parameters not Mapped into SY77

The following DX7II Operator parameters are ignored by sy.factory during conversion as I could not find equivalents in the SY, but I did write the converter a decade ago! If you know otherwise then please let me know.

| DX7II |  | SY77 |  |
| :--- | :--- | :--- | :--- |
| Parameter | Notes | Parameter | Notes |
| SCM 6 | OP6 Scaling Mode |  | Fractional scaling not supported on SY77. |
| SCM 5 | OP5 Scaling Mode |  | Fractional scaling not supported on SY77. |
| SCM 4 | OP4 Scaling Mode |  | Fractional scaling not supported on SY77. |
| SCM 3 | OP3 Scaling Mode |  | Fractional scaling not supported on SY77. |
| SCM 2 | OP2 Scaling Mode |  | Fractional scaling not supported on SY77. |
| SCM 1 | OP1 Scaling Mode |  | Fractional scaling not supported on SY77. |

## DX7II Performance Parameters not Mapped into SY77

The following DX7II Performance parameters are ignored by sy.factory during conversion as I could not find equivalents in the SY, but I did write the converter a decade ago! If you know otherwise then please let me know.

| DX7II |  | SY77 |  |
| :--- | :--- | :--- | :--- |
| Parameter | Notes | Parameter | Notes |
| FDMP | EG Forced Damping |  |  |
| SPSW | Sustain Foot Switch |  | Utility Parameter on SY77 |
| FSAS | Foot Switch Assign |  |  |
| FSW | Foot Switch Range |  |  |
| CSLD1 | Continuous Slider 1 |  |  |
| CSLD2 | Continuous Slider 2 |  |  |

DX7 to SY77 Algorithm Mapping - Algorithm Selection
The following table provides the mapping of DX7 algorithms to SY77 algorithms.
The operators are colour coded so that you can visually see the mapping of DX7 to SY77 operators, as it is not always a one to one mapping.

On the SY77 diagrams:

- The number in the triangle in the lower left corner is the DX7 operator number. On a one to one mapping the number will be the same as the SY77 operator number, but where a mapping has been required then the numbers will be different
- Each operator has two inputs
- Only a few SY77 algorithms have hardwired feedback. A red line shows a feedback loop that needs to be programmed within an algorithm where the feedback is not hardwired.
- Each input on the SY77 shows the programmed input value required: either 7 or 0 , or in the case of the operator with a feedback input then " $F$ " refers to the actual feedback level (FBL) in the DX7 patch.
- On the more complex SY77 algorithms, such as 43 , the equivalent DX7 patch is made by the programming of the input levels, specifically setting the input level to 7 , where a connection is required, or 0 where a connection is not required.


Page 17

|  |  | $\cdots$ |  |
| :---: | :---: | :---: | :---: |
|  |  | - |  |

Page 18


Page 19


| - |  |  |  |
| :---: | :---: | :---: | :---: |
| , |  | ${ }^{*}$ |  |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| * |  | * |  |

Page 22


Page 23

| * | $\begin{array}{lll} 5 & 6 \\ 5 & 6 \\ 2 & 4 \\ 1 & 4 \\ 1 & 3 \\ \hline \end{array}$ |  |  |
| :---: | :---: | :---: | :---: |
| " |  | " |  |

Page 24

| Dx7 |  | SY77 |  |
| :---: | :---: | :---: | :---: |
| 16 |  | 16 |  |
| 17 |  | 16 |  |

Page 25

| " |  |  |  |
| :---: | :---: | :---: | :---: |
| - |  |  |  |


| * |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | * |  |

Page 27


Page 28



Page 30

|  |  | - |  |
| :---: | :---: | :---: | :---: |
|  |  | * |  |

Page 31


Page 32

## DX7 to SY77 Algorithm Mapping - Operator Remapping and Values

Note: FBL in the table below is the DX7 feedback level.

| Algorithm |  | Operator Remapping |  |  |  |  |  | SY77 Feedback |  | SY77 Operator Input Levels |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DX7 | SY77 | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | SRC | DEST | OP1 |  | OP2 |  | OP3 |  | OP4 |  | OP5 |  | OP6 |  |
|  |  |  |  |  |  |  |  |  |  | IP1 | IP2 |
| 1 | 30 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 7 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | FBL | 0 |
| 2 | 30 | 1 | 2 | 3 | 4 | 5 | 6 | 2 | 2 | 7 | 0 | FBL | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 0 | 0 |
| 3 | 34 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 7 | 0 | 7 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | FBL | 0 |
| 4 | 34 | 1 | 2 | 3 | 4 | 5 | 6 | 4 | 6 | 7 | 0 | 7 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | FBL | 0 |
| 5 | 42 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 7 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 0 | FBL | 0 |
| 6 | 42 | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 6 | 7 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 0 | FBL | 0 |
| 7 | 32 | 1 | 2 | 3 | 6 | 4 | 5 | 5 | 5 | 7 | 0 | 0 | 0 | 7 | 7 | 7 | 0 | FBL | 0 | 0 | 0 |
| 8 | 32 | 1 | 2 | 3 | 6 | 4 | 5 | 6 | 6 | 7 | 0 | 0 | 0 | 7 | 7 | 7 | 0 | 0 | 0 | FBL | 0 |
| 9 | 32 | 1 | 2 | 3 | 6 | 4 | 5 | 2 | 2 | 7 | 0 | FBL | 0 | 7 | 7 | 7 | 0 | 0 | 0 | 0 | 0 |
| 10 | 35 | 1 | 2 | 3 | 4 | 5 | 6 | 3 | 3 | 7 | 0 | 7 | 0 | FBL | 0 | 7 | 7 | 0 | 0 | 0 | 0 |
| 11 | 35 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 7 | 0 | 7 | 0 | 0 | 0 | 7 | 7 | 0 | 0 | FBL | 0 |
| 12 | 33 | 1 | 2 | 3 | 4 | 5 | 6 | 2 | 2 | 7 | 0 | FBL | 0 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | 33 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 7 | 0 | 0 | 0 | 7 | 7 | 0 | 0 | 0 | 0 | FBL | 0 |
| 14 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 7 | 0 | 0 | 0 | 7 | 0 | 7 | 7 | 0 | 0 | FBL | 0 |
| 15 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 2 | 2 | 7 | 0 | FBL | 0 | 7 | 0 | 7 | 7 | 0 | 0 | 0 | 0 |
| 16 | 16 | 1 | 6 | 4 | 5 | 2 | 3 | 3 | 3 | 7 | 7 | 7 | 0 | FBL | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 17 | 16 | 1 | 6 | 4 | 5 | 2 | 3 | 6 | 6 | 7 | 7 | 7 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | FBL | 0 |
| 18 | 11 | 1 | 6 | 5 | 2 | 3 | 4 | 5 | 5 | 7 | 7 | 7 | 0 | 7 | 0 | 0 | 0 | FBL | 0 | 0 | 0 |
| 19 | 40 | 4 | 5 | 6 | 2 | 1 | 3 | 3 | 3 | 7 | 0 | 7 | 0 | 0 | FBL | 7 | 0 | 7 | 0 | 0 | 0 |
| 20 | 41 | 1 | 2 | 3 | 4 | 5 | 6 | 3 | 3 | 7 | 0 | 7 | 0 | 0 | FBL | 7 | 7 | 0 | 0 | 0 | 0 |
| 21 | 43 | 1 | 2 | 5 | 4 | 3 | 6 | 5 | 5 | 7 | 0 | 7 | 0 | 0 | 7 | 0 | 7 | 0 | FBL | 0 | 0 |
| 22 | 43 | 1 | 5 | 2 | 3 | 4 | 6 | 6 | 6 | 7 | 0 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 0 | FBL | 0 |
| 23 | 43 | 1 | 2 | 5 | 3 | 4 | 6 | 6 | 6 | 0 | 0 | 7 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | FBL | 0 |
| 24 | 44 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 0 | FBL |
| 25 | 44 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | FBL |
| 26 | 41 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 7 | 0 | 0 | FBL | 0 |
| 27 | 41 | 1 | 2 | 3 | 4 | 5 | 6 | 3 | 3 | 0 | 0 | 7 | 0 | 0 | FBL | 7 | 0 | 7 | 0 | 0 | 0 |
| 28 | 40 | 2 | 3 | 4 | 5 | 6 | 1 | 6 | 6 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | FBL | 0 |
| 29 | 43 | 1 | 2 | 3 | 5 | 4 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 7 | 0 | 0 | FBL | 0 |
| 30 | 43 | 1 | 2 | 3 | 5 | 6 | 4 | 6 | 6 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 7 | 0 | FBL | 0 |
| 31 | 44 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | FBL | 0 |
| 32 | 45 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | FBL | 0 |

## DX7 to SY77 Algorithm Mapping - Operator Settings for the Different Algorithms

The following section provides the details for each algorithm that I have gleaned from a programmatic perspective, and from examining the user interface connections/settings.

If you are manually converting voices, you do not need to worry about this section as selecting the algorithm in the SY will set all the values for you.
The Algorithm Settings table are the values you need for each operator per algorithm to correctly set up the operators.
The Accumulator Calculations are for interest more than anything and will make a little more sense if you read Annex A - SY77 FM Implementation Description on Page 95

## Algorithm 1



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value $^{\mathbf{1}}$ |  |
| :--- | :---: | :---: | :--- | :---: |
|  | Input 0 | Input 1 |  |  |
| 6 | 1 | 0 | OP6 |  |
| 5 | 0 | 1 | OP6 |  |
| 4 | 0 | 1 | OP6 |  |
| 3 | 0 | 1 | OP6 |  |
| 2 | 0 | 1 | OP6 |  |
| 1 | 1 | 0 | OP1 |  |

[^0]Algorithm 2


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 0 | 1 | OP4 |
| 1 | 1 | 0 | OP1 |

Algorithm 3


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 0 | OP1 |

Algorithm 4


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 0 | 1 | OP6 |
| 2 | 0 | 1 | OP6 |
| 1 | 1 | 0 | OP1 |

Algorithm 5


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 0 | 1 | OP6 |
| 2 | 0 | 1 | OP6 |
| 1 | 1 | 0 | OP1 |

Algorithm 6


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 0 | OP1 |

## Algorithm 7



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 1 | 0 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 0 | 1 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 0 | 1 | 0 |
| 5 | 1 | 0 | OP5 |
| 4 | 0 | 1 | OP5 |
| 3 | 0 | 1 | OP5 |
| 2 | 0 | 1 | OP5 |
| 1 | 1 | 0 | OP1 |

Algorithm 8


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 |
| 3 | 0 | 1 | OP6 + OP5 |
| 2 | 0 | 1 | OP6 + OP5 |
| 1 | 1 | 0 | OP1 |

Algorithm 9


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 9 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 0 | 1 | OP4 |
| 1 | 1 | 0 | OP1 |

## Algorithm 10



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 1 | 0 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 0 | 1 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 0 | 1 | 0 |
| 5 | 1 | 0 | OP5 |
| 4 | 0 | 1 | OP5 |
| 3 | 0 | 1 | OP5 |
| 2 | 0 | 1 | OP5 |
| 1 | 1 | 0 | OP1 |

## Algorithm 11



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 |
| 3 | 0 | 1 | OP6 + OP5 |
| 2 | 0 | 1 | OP6 + OP5 |
| 1 | 1 | 0 | OP1 |

## Algorithm 12



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 0 | OP1 |

## Algorithm 13



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 0 | OP1 |

## Algorithm 14



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 1 | 1 | OP6 + OP5 + OP4 |
| 3 | 0 | 1 | OP6 + OP5 + OP4 |
| 2 | 0 | 1 | OP6 + OP5 + OP4 |
| 1 | 1 | 0 | OP1 |

## Algorithm 15



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 2 | 0 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 0 | OP1 |

## Algorithm 16



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 1 | OP6 + OP4 |
| 3 | 0 | 1 | OP6 + OP4 |
| 2 | 0 | 1 | OP6 + OP4 |
| 1 | 1 | 0 | OP1 |

## Algorithm 17



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 0 | 1 | OP4 |
| 1 | 1 | 0 | OP1 |

## Algorithm 18



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 1 | 1 | OP6 + OP5 + OP4 |
| 3 | 0 | 1 | OP6 + OP5 + OP4 |
| 2 | 0 | 1 | OP6 + OP5 + OP4 |
| 1 | 1 | 0 | OP1 |

## Algorithm 19



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 3 | 0 | 0 | 0 | 6 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 1 | 0 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 0 | 1 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

Notes:

- OP6 value is kept in Register 1, whilst the accumulator is used to carry OP5 and OP4 to the input of OP1
- This algorithm has a fixed feedback path on the second input of OP6
- OP6 as the source of FB1 cannot be changed.


## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 0 | 1 | 0 |
| 5 | 1 | 0 | OP5 |
| 4 | 1 | 1 | OP5 + OP4 |
| 3 | 0 | 1 | OP5 + OP4 |
| 2 | 0 | 1 | OP5 + OP4 |
| 1 | 1 | 0 | OP1 |

## Algorithm 20



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 9 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 1 | 1 | 1 |
| Out Accumulator Input 1 Source | 0 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 0 | 0 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 1 | 1 | OP6 + OP5 + OP4 |
| 3 | 1 | 1 | OP6 + OP5 + OP4 + OP3 |
| 2 | 0 | 1 | OP6 + OP5 + OP4 + OP3 |
| 1 | 1 | 0 | OP1 |

## Algorithm 21



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 1 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 0 | 1 | OP6 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

Algorithm 22


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 0 | 1 | OP6 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

Algorithm 23


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 0 | 1 | OP6 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

## Algorithm 24



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 0 | 1 | OP6 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

Algorithm 25


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 |
| 3 | 0 | 1 | OP6 + OP5 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

Algorithm 26


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 1 | 0 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 0 | 1 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 0 | 1 | 0 |
| 5 | 1 | 0 | OP5 |
| 4 | 0 | 1 | OP5 |
| 3 | 0 | 1 | OP5 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

Algorithm 27


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 |
| 3 | 0 | 1 | OP6 + OP5 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

## Algorithm 28



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 9 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 0 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

## Algorithm 29



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 9 | 0 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 1 | 1 | 1 |
| Out Accumulator Input 1 Source | 1 | 0 | 1 | 1 | 1 | 0 |
| Output Level Correction | 1 | 1 | 0 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 1 | 1 | OP6 + OP5 + OP4 |
| 3 | 0 | 1 | OP6 + OP5 + OP4 |
| 2 | 1 | 0 | OP2 |
| 1 | 1 | 1 | OP2 + OP1 |

## Algorithm 30



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 1 | 0 | 1 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 1 | OP3 + OP1 |

## Algorithm 31



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 1 | 0 | 1 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 1 | OP3 + OP1 |

## Algorithm 32



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 1 | 0 | 1 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 1 | OP3 + OP1 |

## Algorithm 33



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 2 | 0 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 1 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 1 | 0 | 1 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 0 | 1 | OP6 + OP5 5 |
| 3 | 1 | 0 | OP3 |
| 2 | 0 | 1 | OP3 |
| 1 | 1 | 1 | OP3 + OP1 |

## Algorithm 34



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 1 | 0 | 0 | 1 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 0 | 1 | OP4 |
| 1 | 1 | 1 | OP4 + OP1 |

## Algorithm 35



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 3 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 1 | 0 | 0 | 1 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 0 | 1 | OP4 |
| 1 | 1 | 1 | OP4 + OP1 |

## Algorithm 36



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 6 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 3 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 1 | 0 | 3 | 2 |
| Out Accumulator Input 0 Source | 1 | 0 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 1 | 0 | 0 | 1 | 0 | 0 |

## Notes

- Accumulator is used to retain OP6 for OP4 input
- Accumulator is used to retain OP4 for final output
- OP3 inputs to Register 1 for input into OP1
- OP3 also has a fixed feedback path via Register 1 to itself


## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 0 | 1 | OP4 |
| 1 | 1 | 1 | OP4 + OP1 |

Algorithm 37


## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 3 | 3 | 3 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 1 | 1 | OP3 + OP2 |
| 1 | 1 | 1 | OP3 + OP2 + OP1 |

## Algorithm 38



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 9 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 3 | 3 | 3 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 1 | 1 | OP3 + OP2 |
| 1 | 1 | 1 | OP3 + OP2 + OP1 |

## Algorithm 39



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 9 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 1 | 0 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 0 | 1 | 1 | 0 |
| Output Level Correction | 3 | 3 | 3 | 0 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 0 | 1 | OP6 |
| 3 | 1 | 0 | OP3 |
| 2 | 1 | 1 | OP3 + OP2 |
| 1 | 1 | 1 | OP3 + OP2 + OP1 |

## Algorithm 40



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 3 | 1 | 0 | 1 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 6 | 0 | 0 | 0 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 1 | 0 | 3 | 2 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 3 | 3 | 0 | 3 | 0 | 0 |

Notes:

- Accumulator retains OP4 value for final summation of carriers.
- OP3 has a fixed destination and feedback via Register 1


## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 1 | 1 | OP4 + OP2 |
| 1 | 1 | 1 | OP4 + OP2 + OP1 |

## Algorithm 41



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 3 | 1 | 0 | 1 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 6 | 9 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 1 | 0 | 3 | 2 |
| Out Accumulator Input 0 Source | 1 | 1 | 0 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 3 | 3 | 0 | 3 | 0 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 0 | 1 | OP4 |
| 2 | 1 | 1 | OP4 + OP2 |
| 1 | 1 | 1 | OP4 + OP2 + OP1 |

## Algorithm 42



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 3 | 0 | 2 | 0 | 1 |
| Out Accumulator Input 0 Source | 1 | 0 | 1 | 0 | 1 | 0 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 1 | 0 | 1 |
| Output Level Correction | 3 | 0 | 3 | 0 | 3 | 0 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 0 | 1 | 0 |
| 5 | 1 | 0 | OP5 |
| 4 | 0 | 1 | OP5 |
| 3 | 1 | 1 | OP5 + OP3 |
| 2 | 0 | 1 | OP5 + OP3 |
| 1 | 1 | 1 | OP5 + OP3 + OP1 |

## Algorithm 43



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 4 | 4 | 4 | 1 | 1 | 6 |
| Oscillator Input Source 1 | 3 | 3 | 3 | 3 | 7 | 7 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 0 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 1 | 1 | 0 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 0 | 1 | 0 |
| Output Level Correction | 4 | 4 | 4 | 4 | 0 | 0 |

Notes:

- This algorithm has two feedback paths that are fixed for OP5 and OP6 as the accumulator is needed to sum the carrier outputs.
- So Registers 1 and 2 are used for OP6 and OP5 storage


## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 0 | 1 | OP6 |
| 4 | 1 | 0 | OP4 |
| 3 | 1 | 1 | OP4 + OP3 |
| 2 | 1 | 1 | OP4 + OP3 + OP2 |
| 1 | 1 | 1 | OP4 + OP3 + OP2 + OP1 |

## Algorithm 44



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 3 | 3 | 3 | 3 | 1 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 6 |
| Oscillator Input 0 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 1 | 1 | 1 | 0 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 1 | 0 | 1 |
| Output Level Correction | 5 | 5 | 5 | 5 | 5 | 0 |

Notes:

- There is a fixed feedback path and register for OP6 feeding the lower operators, as the accumulator is needed for summing the carrier outputs.


## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 0 | 1 | OP6 |
| 5 | 1 | 0 | OP6 |
| 4 | 1 | 1 | OP4 |
| 3 | 1 | 1 | OP4 + OP3 |
| 2 | 1 | 1 | OP4 + OP3 + OP2 |
| 1 | 1 | 1 | OP4 + OP3 + OP2 + OP1 |

## Algorithm 45



## Algorithm Settings

| Parameter | Operator |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| Oscillator Input Source 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input Source 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Oscillator Input O Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Input 1 Shift Value | 7 | 7 | 7 | 7 | 7 | 7 |
| Oscillator Output Destination | 0 | 0 | 0 | 3 | 2 | 1 |
| Out Accumulator Input 0 Source | 1 | 1 | 1 | 1 | 1 | 1 |
| Out Accumulator Input 1 Source | 1 | 1 | 1 | 1 | 1 | 0 |
| Output Level Correction | 6 | 6 | 6 | 6 | 6 | 6 |

## Accumulator Calculations

| Operator | Accumulator Inputs |  | Stored Value |
| :--- | :---: | :---: | :--- |
|  | Input 0 | Input 1 |  |
| 6 | 1 | 0 | OP6 |
| 5 | 1 | 1 | OP6 + OP5 |
| 4 | 1 | 1 | OP6 + OP5 + OP4 |
| 3 | 1 | 1 | OP6 + OP5 + OP4 + OP3 |
| 2 | 1 | 1 | OP6 + OP5 + OP4 + OP3 + OP2 |
| 1 | 1 | 1 | OP6 + OP5 + OP4 + OP3 + OP2 + OP1 |

## SY77 Algorithm Parameters

This section lists the default algorithm settings for the feedback loop parameters.

| Algorithm | Feedback Loop | Source | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
| 1 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP4 | off | off | off | off | off | off |
| 2 | FB1 | OP6 | off | off | off | use | off | off |
|  | FB2 | OP5 | off | off | off | use | off | off |
|  | FB3 | OP4 | off | off | off | use | off | off |
| 3 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP5 | off | off | use | off | off | off |
|  | FB3 | OP4 | off | off | use | off | off | off |
| 4 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP4 | off | use | off | off | off | off |
| 5 | FB1 | OP6 | use | off | off | off | off | off |
|  | FB2 | OP5 | use | off | off | off | off | off |
|  | FB3 | OP4 | use | off | off | off | off | off |
| 6 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP5 | off | off | use | off | off | off |
|  | FB3 | OP4 | off | off | use | off | off | off |
| 7 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP4 | off | use | off | off | off | off |
| 8 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP4 | off | use | off | off | off | off |
| 9 | FB1 | OP6 | off | use | off | use | off | off |
|  | FB2 | OP5 | off | use | off | use | off | off |
|  | FB3 | OP3 | off | use | off | use | off | off |


| Algorithm | Feedback Loop | Source | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
| 10 | FB1 | OP6 | use | off | off | off | off | off |
|  | FB2 | OP5 | use | off | off | off | off | off |
|  | FB3 | OP4 | use | off | off | off | off | off |
| 11 | FB1 | OP6 | use | off | off | off | off | off |
|  | FB2 | OP5 | use | off | off | off | off | off |
|  | FB3 | OP4 | use | off | off | off | off | off |
| 12 | FB1 | OP6 | use | off | off | use | off | off |
|  | FB2 | OP5 | use | off | off | use | off | off |
|  | FB3 | OP2 | use | off | off | use | off | off |
| 13 | FB1 | OP6 | use | off | use | off | off | off |
|  | FB2 | OP5 | use | off | use | off | off | off |
|  | FB3 | OP2 | use | off | use | off | off | off |
| 14 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP3 | off | use | off | off | off | off |
| 15 | FB1 | OP6 | use | off | use | off | off | off |
|  | FB2 | OP4 | use | off | use | off | off | off |
|  | FB3 | OP2 | use | off | use | off | off | off |
| 16 | FB1 | OP6 | use | off | off | off | off | off |
|  | FB2 | OP5 | use | off | off | off | off | off |
|  | FB3 | OP3 | use | off | off | off | off | off |
| 17 | FB1 | OP6 | use | off | off | use | off | off |
|  | FB2 | OP5 | use | off | off | use | off | off |
|  | FB3 | OP3 | use | off | off | use | off | off |
| 18 | FB1 | OP6 | use | off | off | off | off | off |
|  | FB2 | OP5 | use | off | off | off | off | off |
|  | FB3 | OP4 | use | off | off | off | off | off |
| 19 | FB1 | OP6F | use | use | off | off | off | IN2 |
|  | FB2 | OP5 | use | use | off | off | off | off |
|  | FB3 | OP3 | use | use | off | off | off | off |


| Algorithm | Feedback Loop | Source | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
| 20 | FB1 | OP6 | use | off | off | off | off | off |
|  | FB2 | OP5 | use | off | off | off | off | off |
|  | FB3 | OP2 | use | off | off | off | off | off |
| 21 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP4 | off | off | off | off | off | off |
| 22 | FB1 | OP6 | off | off | off | use | off | off |
|  | FB2 | OP5 | off | off | off | use | off | off |
|  | FB3 | OP3 | off | off | off | use | off | off |
| 23 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP5 | off | off | use | off | off | off |
|  | FB3 | OP4 | off | off | use | off | off | off |
| 24 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP4 | off | use | off | off | off | off |
| 25 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP5 | off | off | use | off | off | off |
|  | FB3 | OP4 | off | off | use | off | off | off |
| 26 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP4 | off | use | off | off | off | off |
| 27 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP4 | off | use | off | off | off | off |
| 28 | FB1 | OP6 | off | use | off | use | off | off |
|  | FB2 | OP5 | off | use | off | use | off | off |
|  | FB3 | OP3 | off | use | off | use | off | off |
| 29 | FB1 | OP6 | off | use | off | off | off | off |
|  | FB2 | OP5 | off | use | off | off | off | off |
|  | FB3 | OP3 | off | use | off | off | off | off |


| Algorithm | Feedback Loop | Source | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
| 30 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP2 | off | off | off | off | off | off |
| 31 | FB1 | OP6 | off | off | off | use | off | off |
|  | FB2 | OP5 | off | off | off | use | off | off |
|  | FB3 | OP2 | off | off | off | use | off | off |
| 32 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP5 | off | off | use | off | off | off |
|  | FB3 | OP2 | off | off | use | off | off | off |
| 33 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP4 | off | off | use | off | off | off |
|  | FB3 | OP2 | off | off | use | off | off | off |
| 34 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP3 | off | off | off | off | off | off |
| 35 | FB1 | OP6 | off | off | off | use | off | off |
|  | FB2 | OP5 | off | off | off | use | off | off |
|  | FB3 | OP3 | off | off | off | use | off | off |
| 36 | FB1 | OP3F | use | off | IN1 | use | off | off |
|  | FB2 | OP6 | use | off | off | use | off | off |
|  | FB3 | OP5 | use | off | off | use | off | off |
| 37 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP4 | off | off | off | off | off | off |
| 38 | FB1 | OP6 | off | off | off | use | off | off |
|  | FB2 | OP5 | off | off | off | use | off | off |
|  | FB3 | OP4 | off | off | off | use | off | off |
| 39 | FB1 | OP6 | off | off | use | off | off | off |
|  | FB2 | OP5 | off | off | use | off | off | off |
|  | FB3 | OP4 | off | off | use | off | off | off |


| Algorithm | Feedback Loop | Source | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
| 40 | FB1 | OP3F | off | off | IN2 | off | off | off |
|  | FB2 | OP6 | off | off | off | off | off | off |
|  | FB3 | OP5 | off | off | off | off | off | off |
| 41 | FB1 | OP3F | off | off | IN2 | use | off | off |
|  | FB2 | OP6 | off | off | off | use | off | off |
|  | FB3 | OP5 | off | off | off | use | off | off |
| 42 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP4 | off | off | off | off | off | off |
|  | FB3 | OP2 | off | off | off | off | off | off |
| 43 | FB1 | OP6F | use | use | use | use | use | IN1 |
|  | FB2 | OP5F | use | use | use | use | IN2 | IN2 |
|  | FB3 | ---- | use | use | use | use | use | use |
| 44 | FB1 | OP6F | off | off | off | off | off | IN2 |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP4 | off | off | off | off | off | off |
| 45 | FB1 | OP6 | off | off | off | off | off | off |
|  | FB2 | OP5 | off | off | off | off | off | off |
|  | FB3 | OP4 | off | off | off | off | off | off |

The following table identifies the operator inputs that are predefined depending on the algorithm.

| Algorithm | Input | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
| 1 | Input 1 | OP2 | OP3 | OP4 | OP5 | OP6 | off |
|  | Input 2 | Off | off | off | off | off | off |
| 2 | Input 1 | OP2 | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | Off | off | off | OPA ${ }^{2}$ | off | off |
| 3 | Input 1 | OP2 | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | off | OPA | OPA | off | off | off |
| 4 | Input 1 | OP2 | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | off | OPA | off | off | off | off |
| 5 | Input 1 | OP2 | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | OPA | off | off | off | off | off |
| 6 | Input 1 | OP2 | OP3 | OP4 | off | off | off |
|  | Input 2 | off | off | OPA | off | off | off |
| 7 | Input 1 | OP2 | OP3 | OP4 | off | OP6 | off |
|  | Input 2 | off | OPA | off | off | off | off |
| 8 | Input 1 | OP2 | OP3 | OP4 | off | off | off |
|  | Input 2 | off | OPA | off | off | off | off |
| 9 | Input 1 | OP2 | OP3 | off | OP5 | off | off |
|  | Input 2 | off | OPA | off | OPA | off | off |
| 10 | Input 1 | OP2 | OP3 | OP4 | off | OP6 | off |
|  | Input 2 | OPA | off | off | off | off | off |
| 11 | Input 1 | OP2 | OP3 | OP4 | off | off | off |
|  | Input 2 | OPA | off | off | off | off | off |
| 12 | Input 1 | OP2 | off | OP4 | OP5 | off | off |
|  | Input 2 | OPA | off | off | OPA | off | off |
| 13 | Input 1 | OP2 | off | OP4 | OP5 | off | off |
|  | Input 2 | OPA | off | OPA | off | off | off |
| 14 | Input 1 | OP2 | OP3 | off | off | off | off |

${ }^{2}$ This is the accumulator

| Algorithm | Input | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
|  | Input 2 | off | OPA | off | off | off | off |
| 15 | Input 1 | OP2 | off | OP4 | off | off | off |
|  | Input 2 | OPA | off | OPA | off | off | off |
| 16 | Input 1 | OP2 | OP3 | off | OP5 | off | off |
|  | Input 2 | OPA | off | off | off | off | off |
| 17 | Input 1 | OP2 | OP3 | off | OP5 | off | off |
|  | Input 2 | OPA | off | off | OPA | off | off |
| 18 | Input 1 | OP2 | OP3 | off | off | off | off |
|  | Input 2 | OPA | off | off | off | off | off |
| 19 | Input 1 | OP2 | OP3 | off | off | off | off |
|  | Input 2 | OPA | OP6 | off | off | off | FBOP6 |
| 20 | Input 1 | OP2 | off | off | off | off | off |
|  | Input 2 | OPA | off | off | off | off | off |
| 21 | Input 1 | off | OP3 | OP4 | OP5 | OP6 | off |
|  | Input 2 | off | off | off | off | off | off |
| 22 | Input 1 | off | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | off | off | off | OPA | off | off |
| 23 | Input 1 | off | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | off | off | OPA | off | off | off |
| 24 | Input 1 | off | OP3 | OP4 | OP5 | off | off |
|  | Input 2 | off | OPA | off | off | off | off |
| 25 | Input 1 | off | OP3 | OP4 | off | off | off |
|  | Input 2 | off | off | OPA | off | off | off |
| 26 | Input 1 | off | OP3 | OP4 | off | off | off |
|  | Input 2 | off | OPA | off | off | off | off |
| 27 | Input 1 | off | OP3 | OP4 | off | off | off |
|  | Input 2 | off | OPA | off | off | off | off |
| 28 | Input 1 | off | OP3 | off | OP5 | off | off |
|  | Input 2 | off | OPA | off | OPA | off | off |
| 29 | Input 1 | off | OP3 | off | off | off | off |


| Algorithm | Input | Operators |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
|  | Input 2 | off | OPA | off | off | off | off |
| 30 | Input 1 | off | off | OP4 | OP5 | OP6 | off |
|  | Input 2 | off | off | off | off | off | off |
| 31 | Input 1 | OP2 | off | OP4 | OP5 | off | off |
|  | Input 2 | off | off | off | OPA | off | off |
| 32 | Input 1 | OP2 | off | OP4 | OP5 | off | off |
|  | Input 2 | off | off | OPA | off | off | off |
| 33 | Input 1 | OP2 | off | OP4 | off | off | off |
|  | Input 2 | off | off | OPA | off | off | off |
| 34 | Input 1 | OP2 | OP3 | off | OP5 | OP6 | off |
|  | Input 2 | off | off | off | off | off | off |
| 35 | Input 1 | OP2 | OP3 | off | OP5 | off | off |
|  | Input 2 | off | off | off | OPA | off | off |
| 36 | Input 1 | OP2 | off | FBOP3 | OP5 | off | off |
|  | Input 2 | OP3 | off | off | OPA | off | off |
| 37 | Input 1 | off | off | OP4 | OP5 | OP6 | off |
|  | Input 2 | off | off | off | off | off | off |
| 38 | Input 1 | off | off | OP4 | OP5 | off | off |
|  | Input 2 | off | off | off | OPA | off | off |
| 39 | Input 1 | off | off | OP4 | OP5 | off | off |
|  | Input 2 | off | off | OPA | off | off | off |
| 40 | Input 1 | OP3 | off | off | off | off | off |
|  | Input 2 | off | off | FBOP3 | off | off | off |
| 41 | Input 1 | OP3 | off | off | off | off | off |
|  | Input 2 | off | off | FBOP3 | off | off | off |
| 42 | Input 1 | OP2 | off | OP4 | off | OP6 | off |
|  | Input 2 | off | off | off | off | off | off |
| 43 | Input 1 | OP5 | OP5 | OP5 | OP5 | OP5 | FBOP6 |
|  | Input 2 | OP6 | OP6 | OP6 | OP6 | OP6 | FBOP5 |
| 44 | Input 1 | OP6 | OP6 | OP6 | OP6 | OP6 | off |


| Algorithm | Input |  | Operators |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |  |
|  | Input 2 | off | off | off | off | off | FBOP6 |  |
| 45 | Input 1 | off | off | off | off | off | off |  |
|  | Input 2 | off | off | off | off | off | off |  |

## DX7 to SY Level Scaling

Either use a linear multiplier of 1.571428571428571 (99/63), or use the scaling table below for better results.

| DX7 | SY | Scaling |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0.0000000 | 25 | 53 | 2.1200000 | 50 | 78 | 1.5600000 | 75 | 103 | 1.3733333 |
| 1 | 5 | 5.0000000 | 26 | 54 | 2.0769231 | 51 | 79 | 1.5490196 | 76 | 104 | 1.3684211 |
| 2 | 9 | 4.5000000 | 27 | 55 | 2.0370370 | 52 | 80 | 1.5384615 | 77 | 105 | 1.3636364 |
| 3 | 13 | 4.3333333 | 28 | 56 | 2.0000000 | 53 | 81 | 1.5283019 | 78 | 106 | 1.3589744 |
| 4 | 17 | 4.2500000 | 29 | 57 | 1.9655172 | 54 | 82 | 1.5185185 | 79 | 107 | 1.3544304 |
| 5 | 20 | 4.0000000 | 30 | 58 | 1.9333333 | 55 | 83 | 1.5090909 | 80 | 108 | 1.3500000 |
| 6 | 23 | 3.8333333 | 31 | 59 | 1.9032258 | 56 | 84 | 1.5000000 | 81 | 109 | 1.3456790 |
| 7 | 25 | 3.5714286 | 32 | 60 | 1.8750000 | 57 | 85 | 1.4912281 | 82 | 110 | 1.3414634 |
| 8 | 27 | 3.3750000 | 33 | 61 | 1.8484848 | 58 | 86 | 1.4827586 | 83 | 111 | 1.3373494 |
| 9 | 29 | 3.2222222 | 34 | 62 | 1.8235294 | 59 | 87 | 1.4745763 | 84 | 112 | 1.3333333 |
| 10 | 31 | 3.1000000 | 35 | 63 | 1.8000000 | 60 | 88 | 1.4666667 | 85 | 113 | 1.3294118 |
| 11 | 33 | 3.0000000 | 36 | 64 | 1.7777778 | 61 | 89 | 1.4590164 | 86 | 114 | 1.3255814 |
| 12 | 35 | 2.9166667 | 37 | 65 | 1.7567568 | 62 | 90 | 1.4516129 | 87 | 115 | 1.3218391 |
| 13 | 37 | 2.8461538 | 38 | 66 | 1.7368421 | 63 | 91 | 1.4444444 | 88 | 116 | 1.3181818 |
| 14 | 39 | 2.7857143 | 39 | 67 | 1.7179487 | 64 | 92 | 1.4375000 | 89 | 117 | 1.3146067 |
| 15 | 41 | 2.7333333 | 40 | 68 | 1.7000000 | 65 | 93 | 1.4307692 | 90 | 118 | 1.3111111 |
| 16 | 42 | 2.6250000 | 41 | 69 | 1.6829268 | 66 | 94 | 1.4242424 | 91 | 119 | 1.3076923 |
| 17 | 43 | 2.5294118 | 42 | 70 | 1.6666667 | 67 | 95 | 1.4179104 | 92 | 120 | 1.3043478 |
| 18 | 45 | 2.5000000 | 43 | 71 | 1.6511628 | 68 | 96 | 1.4117647 | 93 | 121 | 1.3010753 |
| 19 | 46 | 2.4210526 | 44 | 72 | 1.6363636 | 69 | 97 | 1.4057971 | 94 | 122 | 1.2978723 |
| 20 | 48 | 2.4000000 | 45 | 73 | 1.6222222 | 70 | 98 | 1.4000000 | 95 | 123 | 1.2947368 |
| 21 | 49 | 2.3333333 | 46 | 74 | 1.6086957 | 71 | 99 | 1.3943662 | 96 | 124 | 1.2916667 |
| 22 | 50 | 2.2727273 | 47 | 75 | 1.5957447 | 72 | 100 | 1.3888889 | 97 | 125 | 1.2886598 |
| 23 | 51 | 2.2173913 | 48 | 76 | 1.5833333 | 73 | 101 | 1.3835616 | 98 | 126 | 1.2857143 |
| 24 | 52 | 2.1666667 | 49 | 77 | 1.5714286 | 74 | 102 | 1.3783784 | 99 | 127 | 1.2828283 |

This is shown graphically below


## DX7 to SY Scaling Constants

| Parameter | Calulcation | Scaling Value |
| :---: | :---: | :---: |
| - DX7 ENVELOPE VALUE SCALING <br> - DX7 PITCH EG RATE SCALING <br> - DX7 OPERATOR EG RATE SCALING <br> - DX7 OPERATOR EG LEVEL SCALING <br> - DX7II PAN EG RATE SCALING | (99.0/63.0) | 1.571428571428571 |
| - DX7 OUTPUT LEVEL VALUE SCALING <br> - DX7 OUTPUT LEVEL OFFSET SCALING <br> - DX7 LFO DEPTH SCALING <br> - DX7 LFO PMD SCALING <br> - DX7 LFO AMD SCALING | (127.0/99.0) | 1.282828282828283 |
| - DX7 PITCH EG LEVEL SCALING | (63.0/49.0) | 1.285714285714286 |
| - DX7 AMPLITUDE MODULATION SENSITIVITY SCALING | (7.0/3.0) | 2.333333333333333 |
| - DX7II BALANCE SCALING | (127.0/50.0) | 2.54 |
| - DX7II PAN EG LEVEL SCALING | (32.0/50.0) | 0.64 |

## DX7 to SY Lookup Tables

The following tables are Java arrays that are used within sy.factory to convert DX to SY values. The DX value is used as the index into the array to "look up" the equivalent SY value.

The reasons for using lookup tables are manifold:

- Speed and efficiency:
- The DX and SY parameters are integer values, but the computations for scaling will need to be computed using floating point arithmetic and then rounded to integers, so simple lookups save repeated computation and rounding.
- Speed and efficiency are of course less of issue these days with the processing power of modern computers, but if you are doing bulk conversions of loads of files then every little speed gain helps the overall conversion time
- Some relationships between DX and SY values are not linear, so difficult if not impossible to compute with an equation - e.g. algorithm mapping, the non linear operator rate scaling, etc.

If time permits, and if there is the interest, I may convert these Java lookup tables into Word tables to assist manual computation. In the meantime if you wish to create your own tables (and if you do please send them to me for inclusion here!) then create a Word table simular to the one given above for the level scaling, with a column for the DX value and a column for the SY value. The DX Column value starts at zero and increased by one for each row and you need as many rows as there are lookup entries. The SY Column values are taken from the data below.

```
private static int algorithmMapping[] = {
// Displayed algorithms numbers are the values listed below + 1
};
private static int operatorOutputLevelScaling[] = {
\begin{tabular}{rrrrrrrrrr}
0, & 5, & 9, & 13, & 17, & 20, & 23, & 25, & 27, & 29 \\
31, & 33, & 35, & 37, & 39, & 41, & 42, & 43, & 45, & 46 \\
48, & 49, & 50, & 51, & 52, & 53, & 54, & 55, & 56, & 57 \\
58, & 59, & 60, & 61, & 62, & 63, & 64, & 65, & 66, & 67 \\
68, & 69, & 70, & 71, & 72, & 73, & 74, & 75, & 76, & 77 \\
78, & 79, & 80, & 81, & 82, & 83, & 84, & 85, & 86, & 87 \\
88, & 89, & 90, & 91, & 92, & 93, & 94, & 95, & 96, & 97 \\
98, & 99, & 100, & 101, & 102, & 103, & 104, & 105, & 106, & 107 \\
108, & 109, & 110, & 111, & 112, & 113, & 114, & 115, & 116, & 117 \\
118, & 119, & 120, & 121, & 122, & 123, & 124, & 125, & 126, & 127
\end{tabular}
```

$/ / 00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31$,
$29,29,33,33,41,41,31,31,31,34,34,32,32,30,30,15,15,10,39,40,42,42,42,43,43,40,40,39,42,42,43,44$
\};

Page 92

```
private static int pitchEgRateScaling[] = {
```

$0,1,1,2,3,3,4,4,5,5$
6, 6, 7, 7, 8, 8, 9, 9, 10, 10
11, 12, 12, 13, 14, 15, 15, 16, 17, 18,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
$28,29,30,31,32,33,34,35,36,37$
$38,39,40,40,41,42,42,43,43,43$
$44,45,45,46,47,47,48,48,49,49$
50, 50, 51, 52, 52, 53, 53, 54, 54, 55
55, 56, 56, 56, 57, 57, 58, 58, 59, 59
$60,60,61,61,61,62,62,62,63,63$
\};
private static int pitchEgLevelScaling[] = \{
$39,39,40,40,41,41,42,42,43,43$,
44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
54, 54, 55, 55, 56, 56, 57, 57, 58, 58,
59, 59, 60, 60, 61, 61, 62, 62, 63, 63,
64, 64, 65, 65, 66, 66, 67, 67, 68, 68,
69, 69, 70, 70, 71, 71, 72, 72, 73, 73,
$74,74,75,75,76,76,77,77,78,78$,
79, 79, 80, 80, 81, 81, 82, 82, 83, 83,
84, 84, 85, 85, 86, 86, 87, 87, 88, 88,
\};
private static int operatorEgRateScaling[] = \{
0, 1, 1, 2, 3, 3, 4, 4, 5, 5,
6, 6, 7, 7, 8, 8, 9, 9, 10, 10,
$11,12,12,13,14,15,15,16,17,18$,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
$28,29,30,31,32,33,34,35,36,37$,
$38,39,40,40,41,42,42,43,43,43$,
$44,45,45,46,47,47,48,48,49,49$,
$50,50,51,52,52,53,53,54,54,55$,
$55,56,56,56,57,57,58,58,59,59$,
60, 60, 61, 61, 61, 62, 62, 62, 63, 63,
\};
private static int operatorEgLevelScaling[] = \{
$0,1, \quad 1,2,3,3,4,4,5,5$, 6, 6, 7, 7, 8, 8, 9, 9, 12, 10, 10, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, $38,39,40,40,41,42,42,43,43,43$, $44,45,45,46,47,47,48,48,49,49$, $50,50,51,52,52,53,53,54,54,55$, 55, 56, 56, 56, 57, 57, 58, 58, 59, 59, $60,60,61,61,61,62,62,62,63,63$,
\};
private static int lfoSpeedScaling[] = \{
0, 2, 4, 6, 8, 10, 12, 14, 17, 20,
23, 25, 27, 29, 31, 34, 36, 38, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 66, 67, 68, 68, 69, 69, 70, 71, 71, 72, 72, 73, 73, 74, 75, 76, 76, $77,77,78,78,79,79,80,80,81,81$, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 98, 99,
\};
private static int amplitudeModulationSensitivityScaling[] = \{
$0,2,5,7$
\};
private static int panMode[] = \{
$2,0,1$
\};

## Annex A - SY77 FM Implementation Description

This Annex describes the SY77 FM Implementation as I understand it. The intent of collating this information is to assist in the implementation of features in sy.factory that require such an understanding. The information has been gleaned from reverse engineering the SY77 SYSEX file data, to fill in the information which has not been included in the SY77 manual or data lists.

## Disclaimer

This information is based on my understanding of the SY77 implementation, and may or may not have errors in it. I have provided this information freely, and you use the contents AS IS and at your own risk. If you find any material errors, then please let me know and I'll make any required corrections.

## Overview

The SY77 has quite an advanced 6 operator architecture compared to the DX7, where all of the algorithms were fixed with no flexibility in terms of how the algorithms could be adapted, other than being able to program operator output levels and the input of the single feedback level on the fixed feedback path. By contrast, the SY77 features more algorithms, three programmable feedback paths, alternative modulating inputs from the AWM section and a noise generator, and a (not very well publicised) programmable "free algorithm".

For each output sample, the six operators are calculated in reverse order first. I.e. Operator 6 , then Operator 5 and so on, which fixes the operator algorithm permutations.

To allow the results of prior operator calculations to be used in the sample calculation for subsequent operators there are three registers that can temporarily hold an operator output value and an accumulator which can sum the calculated sample value for the operators. There are also three programmable feedback paths.

## Thru Paths

Before looking at Registers and Accumulators, it is worth considering Thru Paths, as most connections in an algorithm are made this way. Basically a through connection can be made from an Operator whose number is one greater than the Operator it is connecting to.
for example, Algorithm 1 has a full sequential stack of operators, from $6,5,4,3,2$ to 1 . All of the connections are made via simple Thru Paths.

I hypothesise that there is an extra register that stores the value of the last operator calculation, which is then replaced by each subsequent operator calculation.

## Registers and Feedback Paths

The FM implementation has three registers which can be used to store the value of an operator calculation. These registers can be used in later calculations, so because of the calculation flow, a stored value in a register can only be used in a calculation for an Operator that is lower in number than the Operator whose value is stored in a register.

For example, if Operator 3 is an input to a register, then it can be used as an input to Operators 1 and 2, but not Operators 4, 5, and 6.

I don't think that there is a way to program these registers other than them being hard coded into certain algorithms. For example, the ones where feedback paths are fixed and cannot be changed:

- Algorithm 19
- Algorithm 36
- Algorithm 40
- Algorithm 41
- Algorithm 43
- Algorithm 44

I believe that these registers are required to hold calculations of operator values whilst the accumulator is also in use for other calculations in the algorithm, hence why these algorithms have fixed paths that cannot be changed. For example, on Algorithm 19, the outputs of 4 and 5 are probably being summed in the accumulator, so the value of Operator 6 must be held in a register as an input for Operator 2 when its sample is calculated.

I also think the same registers are used for providing the feedback paths as on the algorithms listed above, the feedback paths are fixed and cannot be changed.

Taking Algorithm 19 again as an example, you can see there is a need to provide the operator 6 value to operator 2 , and there is a fixed feedback path to Operator 6 as part of the algorithm.

This hypothesis is derived from the examination of the algorithms for which there are fixed feedback paths.

If you consider a set of Operator sample calculations as a continuous stream of calculations in the series ... $\mathrm{N}-2, \mathrm{~N}-1, \mathrm{~N}, \mathrm{~N}+1, \mathrm{~N}+2 \ldots$ where N is the current sample calculation:

- A register can be used in the current cycle to provide the current value of an operator for use later in the calculation.
- A register can be used to retain the value of an operator for the next sample calculation cycle (feedback), so for sample $N$, the value of a register will hold a calculated sample of the selected operator as calculated in sample cycle $\mathrm{N}-1$.

When used in a current calculation, a register cannot feed a higher operator number from a lower operator number (because of the operator calculation order). When used to provide feedback, then any Operator's N-1 sample value can be used as an input to any Operator (as it is available at the start of the calculation cycle).

It looks like the Accumulator (see below) is used in preference to using a register for storing single operator values until needed, because (I believe) use of a register ties up a feedback path.

If an algorithm can use the accumulator without requiring a register, then no feedback paths are tied up. I.e., you only see fixed feedback paths where the accumulator is needed for summing later results. For example, on Algorithm 36, there is a fixed feedback path (and register to OP1) on OP3, because the accumulator is needed to sum OP4 and OP1, and it is used to store OP6 prior to that.

## Accumulator

It took me a long while to suss out what the input values into the accumulator where, and how they might work.

The following diagram shows how I think that the accumulator works. Note that in the algorithm details given previously in the document, I have looked at the accumulator input selects in each operator and mapped through how they work to verify that my understanding is correct. It seems to hang together for all algorithms!

I am assuming that the accumulator is reset at the start of each complete operator calculation cycle. It makes no sense for it to retain previous values anyway.


Basically, I believe that IP1 can be selected to be either 0 or the current output of the accumulator.

IPO can be selected to be either 0 , or the output of the most recently calculated operator sample value. The SY77 data list identifies that the value can vary between 0 and 2 without explaining what the values represent! In the examinations so far, I have seen nothing to indicate what the $3^{\text {rd }}$ input on IPO can be. So, it's still a bit of a mystery.

The following table shows the accumulator input selection logic as I understand it (not withstanding what the $3^{\text {rd }}$ IPO input might be).

| IPO Value | IP1 Value | Accumulator Result |
| :--- | :--- | :--- |
| 0 | 0 | The output of the accumulator is reset to zero, although it should be <br> noted, that in the algorithms, this value never occurs. The accumulator is <br> either set to the OP6 calculated value or, the current accumulator value <br> (which I presume is zero at the start of the cycle, therefore maybe the <br> start of the cycle commences with this set if inputs to perform a reset). |
| 1 | 0 | The output of the accumulator will be the value of the current operator's <br> sample value. |
| 0 | 1 | The Output of the accumulator will be its previous value. This is a way of <br> preserving the accumulator value until it is needed as an input into an <br> operator or until it needs to be summed. |
| 1 | 1 | The current accumulator output is summed with the current operator's <br> sample value. |

IPO is always 1 for operator 1, as it's always a carrier output.

The accumulator is effectively the output of all the carriers in an algorithm, so this is the value output to the rest of the AFM engine.
Sources of Inputs to Operators
Based on the above notes, and by reverse engineering the byte values in an SY77 SYSEX dump for different program settings, the available operator input sources and their numeric representation are:

- $0 \quad$ Off (no input)
- 1 Previous Operator (Thru Path)
- 2 AWM Element (RCM)
- 3 Register 1 (current cycle only, from high operator to low operator)
- 4 Register 2 (current cycle only, from high operator to low operator)
- 5 Register 3 (current cycle only, from high operator to low operator)
- 6 Feedback Path 1
- 7 Feedback Path 2
- 8 Feedback Path 3
- 9 Accumulator
- 10 Noise


[^0]:    ${ }^{1}$ At the end of each operator calculation

